Negentropic Planar Symmetry Detector Supplementary Material

A. Migalska ${ }^{\text {a }}{ }^{* \dagger}$, J.P. Lewis ${ }^{\text {b }}$
${ }^{a}$ Wroctaw University of Technology, 50-370 Wroctaw, Poland
${ }^{b}$ Victoria University, Wellington 6012, New Zealand

1 Details of a Loy and Eklundh's Method Assessment

In this section we present the details of Loy and Eklundh's method [1] assessment. The pseudocode is given in Algorithm 1. The input parameters are an image I and a scaling factor $s f \in(0,1]$. In our experiments we have set dist_max as $1 / 64$ of the original image resolution, this parameter is used to determine the most centred rotation in an image.
[2] utilizes the right-handed coordinate system, while in our method we use the left-handed one. Therefore in line 6 of the algorithm we transform the results to the left-handed system and take modulo 180 to keep angles between 0° and 180°.

2 Details of a Shen-Ip Symmetry Detector Assessment

Shen-Ip Symmetry Detector [3] is based on generalized complex (GC) moments given by

$$
G C_{p, q}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{\infty} I(r, \theta)\left(r^{p+1} \exp (i q \theta)\right) d r d \theta
$$

In our implementation of Shen-Ip method we map an image I onto a unit disc so that $r \in[0,1]$ and $\theta \in[0,2 \pi]$ and utilize a discrete estimator of a GC moment,

$$
\widehat{G C}_{p, q}=\frac{1}{2 \pi} \sum_{0}^{2 \pi} \sum_{0}^{1} I(r, \theta) r^{p+1} \exp (i q \theta)
$$

We have found, however, a certain problem with using $G C$ moments. Moments with repetition q equal to a multiple of 4 reach significantly higher values than other moments. We have run our experiments including and excluding these moments, and the latter yielded higher detection rates.

[^0]```
Algorithm 1 Execution of Loy and Eklundh's Algorithm
 procedure LoyEklundh (\(I, s f\))
 loy_refl \(\leftarrow[1]\) call for mirror symmetry detection in \(I\) scaled by sf
 loy_rot \(\leftarrow[1]\) call for rotational symmetry detection in \(I\) scaled by \(s f\)
 if NbOFRows \(\left(\right.\) loy \(\left._r e f l\right)>0\) then
 angle \(\leftarrow\) loy_refl[1][2] \(\triangleright\) the angle of a dominant symmetry
 tilt_angle \(\leftarrow(\) angle +90\() \bmod 180\)
 order_refl \(\leftarrow\) NBOFRows \(\left(l o y _r e f l\right)\)
 else
 tilt_angle \(\leftarrow-1\)
 order_refl \(\leftarrow 0\)
 end if
 \(r o t _i d x \leftarrow\) an index of a row in loy_rot that contains rotational symmetry whose centre is
 the closest to the centre of an image and no further away than a predefined threshold dist_max.
 If no such symmetry was found then 0 .
 if rot_idx \(>0\) then
 order_rot \(\leftarrow\) loy_rot \(\left[r o t _i d x\right][3]\)
 else
 order_rot \(\leftarrow 1\)
 end if
 return order_refl, angle, order_rot
 end procedure
```


## Acknowledgements

The work of Agata Migalska has been supported by the National Science Center under grant: 2012/07/B/ST7/01216, internal code 350914 of the Wrocław University of Technology.

## References

[1] G. Loy, J.-O. Eklundh, Detecting symmetry and symmetric constellations of features, in: Computer Vision-ECCV 2006, Springer, 2006, pp. 508-521.
[2] [link].
URL http://www.nada.kth.se/~gareth/homepage/local_site/code.htm
[3] D. Shen, H. H. Ip, K. K. Cheung, E. K. Teoh, Symmetry detection by generalized complex (gc) moments: a close-form solution, IEEE Trans Pattern Anal Mach Intell 21 (5) (1999) 466-476.


[^0]:    * Corresponding author: Department of Control Systems and Mechatronics, Faculty of Electronics, Wrocław University of Technology, 50-370 Wrocław, Poland
    ${ }^{\dagger}$ Email address: agata.migalska@pwr.edu.pl (A. Migalska)

